Sharing Network Parameters for Crosslingual Named Entity Recognition
نویسندگان
چکیده
Most state of the art approaches for Named Entity Recognition rely on hand crafted features and annotated corpora. Recently Neural network based models have been proposed which do not require handcrafted features but still require annotated corpora. However, such annotated corpora may not be available for many languages. In this paper, we propose a neural network based model which allows sharing the decoder as well as word and character level parameters between two languages thereby allowing a resource fortunate language to aid a resource deprived language. Specifically, we focus on the case when limited annotated corpora is available in one language (L1) and abundant annotated corpora is available in another language (L2). Sharing the network architecture and parameters between L1 and L2 leads to improved performance in L1. Further, our approach does not require any hand crafted features but instead directly learns meaningful feature representations from the training data itself. We experiment with 4 language pairs and show that indeed in a resource constrained setup (lesser annotated corpora), a model jointly trained with data from another language performs better than a model trained only on the limited corpora in one language.
منابع مشابه
Named Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملسیستم شناسایی و طبقهبندی موجودیتهای اسمی در متون زبان فارسی بر پایه شبکه عصبی
Named Entity Recognition (NER) is a fundamental task in natural language processing and also known as a subset of information extraction. We seek to locate and classify named entities in text into predefined categories such as the names of persons, organizations, locations, expressions of times, etc. Named Entity Recognition for English texts has been researched widely for the past years, howev...
متن کاملPAYMA: A Tagged Corpus of Persian Named Entities
The goal in the named entity recognition task is to classify proper nouns of a piece of text into classes such as person, location, and organization. Named entity recognition is an important preprocessing step in many natural language processing tasks such as question-answering and summarization. Although many research studies have been conducted in this area in English and the state-of-the-art...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملبهبود شناسایی موجودیتهای نامدار فارسی با استفاده از کسره اضافه
Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1607.00198 شماره
صفحات -
تاریخ انتشار 2016